FORMATION OF AN EDDY CURRENT IN THE THERMAL
ACCELERATION OF A COMPLETELY IONIZED PLASMA

A. P. Shubin UDC 533.9+537.56

The steady-state plane slowly varying flow of a completely ionized nonviscous quasi-neutral
plasma in a shaped channel with continuous metal walls is considered. The Hall effect is
taken into account. It is shown that for 8> 1, where 8 is the plasma parameter (8=8mp/B?,
p is the gas-kinetic pressure of the plasma, and B is the magnetic field strength), the ac-
celeration of the plasma is necessarily accompanied by the appearance of natural electro-
magnetic fields and an electric current, the distribution of which for small discharge volt-
ages has an eddy-current form. The eddy currentis disappear when the discharge voltage is
increased. The acceleration of a plasma with isothermal electrons is investigated in detail.

The steady-state flows of a plasma with its own magnetic field in shaped planes and axisymmetric
channels for large values of the parameter 8 have been considered repeatedly (see, for example, [1, 21).
It has been shown that these flows may be accompanied by eddy currents close to the electrodes, and that
the eddy currents disappear when the parameter 8 is reduced. The purpose of this paper is to take the
Hall effect into account, i.e., to take into account the effect of the elementary plasma acceleration mecha-
nisms [3] on the formation of the electromagnetic field and currents in an accelerated plasma.

1. In order to simplify the calculations we will consider a stationary plane MHD flow {in the xy
plane) of a completely ionized nonviscous plasma in a channel with continuous impenetrable metal walls
(the electrodes) (Fig. 1). The magnetic field, due to the flow of the discharge current,is directed along the
7 axis, in the direction of which the channel is assumed to be infinitely wide.

We will assume that the flow is a slowly varying one, and the magnetic Reynolds number is large
(R > 1). Instead of the variable y we will introduce the normalized flow function

PP=mVpXm, (1.1)

where p is the plasma density, v is the plasma (ion) velocity, and m is the mass flow rate per second, i.e.,
the mass of plasma which passes per second through a transverse cross section of the channel.

In the (x, §) variables the system of equations which describes the flow takes the form [4]

v dP B
Wam=— P@=pE)t+g
Ym pv 0B _ %%, M aP '('v _ cZ) (1.2)
T map - T @ ep dz ™" Ins
B 1 09, _ M Sdpi(P)
T W Pr=0+ —

Here ¢ is the electric potential of the plasma, and ¢ is the plasma conductivity.

We will assume that the state of the plasma components can be described by the polytropic relations
Pi,e=DPi,e (0); the latter hold for 8> 1, since the Joule heat emission is small, and the effect of heat trans-
fer or heat supply and radiation can be assumed to be appropriate by suitable choice of the polytropic in-
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¢ dex. If B> 1, system (1.2) can be simplified. In fact, in the zeroth approximation
1 with respect to 871 we have P(x)=plp), i.e., p=p(x), in which case we obtain from
the first of Eqs. (1.2)
Yt tw@=F W) (v={ e (1.3)
’ 7 If F(p) =const, it follows from (1.3) that v=v(x). Since g~T¥?2 (T is the tem~
i perature) and, consequently, o= (x), we can introduce the variable 7 in place of
Fig. 5 the variable x:
¢ V%

n= S o dz (1.4)

*o

where the coordinate x; corresponds to the input to the channel. We then obtain the following equations
for the potential ¢ and the magnetic field B:

g bp M dw, (w =S dp, (P)) (1.5)
3P Tm  Te dn e P
pc dg
B=— 155y (1.6)

The last terms on the right sides of the third equation of (1.2) and Eq. (1.5) take into account the Hall
effect; for 8> 1 this is equivalent to taking the term Vpe/ en into account in Ohm's law.

It follows from Eq. (1.3) that the acceleration of the plasma with 8> 1 has a gas-dynamic form, and
the field and current distributions are completely determined by the gas-dynamic nature of the flow. It
follows from the presence of the right side in Eq. (1.5) that the plasma potential is not constant even when
there is no potential difference between the electrodes, and it follows from Eq. (1.6) that in a plasma there
is an inherent (nonconstant) magnetic field, i.e., an electric current flows in the plasma. This is a unique
consequence of the transformation of thermal energy of the elecirons into energy of directed motion of the
plasma (ions), and this transformation must be accompanied by the appearance of an ion-accelerating lon-
gitudinal electric field [5] and an "electron wind™", i.e., a longitudinal current [3]. When there is no poten-
tial difference between the electrodes, there is no discharge current; consequently, the electric distribu-
tion in the channel has an eddy-current form.

2. If there is no longitudinal electric current at the input of the channel, and the electrodes are equi~
potentials, the boundary conditions for Eq. (1.5) are as follows:

p 0, Y =0 o¢("n0=0 omnH=U (2.1)

Here U=const is the discharge voltage, and it is assumed that at the cathode =0, and at the anode
y=1. The solution of Eq. (1.5) with the boundary conditions (2.1) has the form
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]
p=Up—4 § n(2k+1) cos[n(2k+ 1)(¢—T)Ji
The evenness of the last term on the right side of (2.2) in y with respect to the line y=Y, is a fairly
obvious fact, which follows from the symmetry of the problem for U=0.

As a concrete example we will consider the flow of a plasma with isothermal electrons (Te =const=
T) and ions (Tj=Tyg).

In this case we=w/2, and we have from Eq. (1.3)

v? 27 p__ v:(0)
_.2_—[—_1_”_1[1 TR (2.3)

If we choose the dependence p () in the form

p = p (0) exp [—n] (2.4)
we find from (2.3)
v="I[?(0) + 4Tn/ M]*" (2.5)
Relation (2.2) gives
17 47 < % 1) (@p — o
o= Uy + 5 [(v—5) - 7]+ % 3 (= )" exp (= 2k + 1) e (2.6)
Consequently,
. 0 T TG in [ (2 A1) (p — s
M o 04 2 (340 F 5 R ] 7

For 1=0 the two last terms in the curly brackets cancel one another out. Assuming an exponential
fall in the terms of the series, we can write approximately

p (0) ¢ (2.8)

B~ —"——exp{—mn) {U—{——Z— (ip -———12—) i1 ——exp(—:ﬁn)i}

Introducing the dimensionless parameter «
w=2U/T>0
we can write expression (2.8) in the form
B =~ B (0) exp (—n) {1 +x7! (2 — 1) [1 — exp (—a*n)]} (2.9)
where B(0)=—p(0)cU/m"* is the magnetic field at the input to the channel (7=0).

We will consider expression (2.9) in more detail. The function B (n,y) decreases monotonically as y
increases (B (0)=0), reaching a maximum B* and a minimum Bx at the electrodes y=0 and $=1. In this
case

B*(n) =B (1,0) = B (0) exp (—n) {1 —x7*[1 — exp (—w*n)]} (2.10)
B, () =B, 1) = B0 exp (—n) {1 +x»*[1 — exp (—n'n)l}

The functions B* (n) and By (1) have extremal points ngs Which correspond to the centers of the eddy
structure of the eleciric current. In this case

14n2 | 14 a2

Nelyms = w210 | T2 2.11)

Me ]4—0 =n%ln ]
The equation of the line y =g, (7)), which corx_'esponds to zero magnetic field, has the form
Po (M) = - — - [1 —exp (—a*n)]™ (2.12)

Hence, the line B=0 exists for n=1. If¢>gb0, then B <0, and if  <¢o, then B>0. For n=0 y, (1) =Y,
and for >0 and n— oo Y, — (1 — %)/ 2.

We will first consider the case ®=0, when B (0)=0. In this case N¢=0 = N.|¢=1 = 72 In (1+7%), and
the extremal points of the lines of electric current B (n,$) = const coincide with 7 e
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The current distribution pattern in the channel for »=0 is shown in Fig. 2. When the parameter »
is increased the magnetic field at the input to the channel differs from zero (negatively) and there are two
separatrices which limit the eddy structure region, one of them being the line ¢, (n) of zero magnetic field,
and the other the line B(n,$)=B(0), i.e.,

% ex —1 .
wZWI(n):%+7T$’Z%W (2.13)

The separatrix ¢ =4, () has a positive derivative diy/dn, and it exists (and intersects the anode, i.e.,
reaches a value y=1) for n=r2 It follows from (2.11) that when ¥ increases the eddy current close to
the cathode shifts towards larger 7, and the eddy current close to the anode is shifted towards the channel
input. The electric current distribution pattern for 0 < <1 is shown in Fig. 3. In the case when w=1 the
eddy currents closeto the cathode and the separatrix y =y, (n) disappear, and B <0 over the whole channel
(Fig. 4). When the parameter w reaches a value of r2 the eddy current near the anode also disappears
(the separatrix ¢, (n) contracts to the point =0, $ =1 at the input of the channel), and for »>7? the current
distribution in the channel does not have an eddy structure (Fig. 5).

The condition 8> 1, i.e., B®/8mp <« 1 can be written in the following form:

ROEMTE L g (2.14)

If v2(0) «4T/M, condition (2.14) takes the form

e (1 +wp2
16 mp%‘*z

<1 (e=278.) (2.15)
where wp2=47rezn (0)/M and £* is the width of the channel at the critical cross section (i.e., where df/dx=0).
If v2(0) »>4T/M, we obtain from (2.14)

T (1 4%

(2.16)
My (D) 8w,2* (0) <1

It follows from conditions (2.15) and (2.16) that the discharge voltage must not be too high. An in-
crease in the parameter v corresponds to a reduction in 8. Hence, the eddy currents near the electrodes
disappear when 8 decreases. The exchange parameter £ =Mc |B(0)]/4rem" in this problem is

_ _4‘*%%‘5 0 < 57 (2.17)
“Mv{w 2mp§;§(0) » 0> %
Comparing (2.17) with (2.14) and (2.15) we see that
(2.18)

1 %
e <t

Here B* is the maximum value of 8. For a given 8 the exchange parameter { is a maximum for n=1,
when the eddy currents close to the cathode disappear.
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